If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=144
We move all terms to the left:
2x^2+10x-(144)=0
a = 2; b = 10; c = -144;
Δ = b2-4ac
Δ = 102-4·2·(-144)
Δ = 1252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1252}=\sqrt{4*313}=\sqrt{4}*\sqrt{313}=2\sqrt{313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{313}}{2*2}=\frac{-10-2\sqrt{313}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{313}}{2*2}=\frac{-10+2\sqrt{313}}{4} $
| 2x^2+10=144 | | 24-5x+x*x=0 | | 9x-2-4x=13 | | 24-5x+24x*x=0 | | X(3x+7)(x-5)=0 | | X^-14x-161.25=0 | | 3x^-2x-20=0 | | X^-7x+2=0 | | y-5-2y=4y+2 | | 2x^+6x-1=0 | | (2x)=(4x-12) | | X^-3x-2=0 | | 5x+1/3=2-3x | | -3(2x+5)-4(-5x-4)=2(6x+7 | | 3x/2=(50-5x)/2 | | (x)=(2x-30) | | 5x=4*3 | | x3-15x2-34x=0 | | -x2+7x-12=0 | | 29s+18=18 | | 9x+19=29 | | 3*x+7=x+2 | | 4x=-3x+36 | | 4.5w=5.1w–30 | | 8s+19=22 | | 6x^2-72x+144=0 | | 2/3x+1=-3/4x+1 | | 18s+22=23 | | 3n²-15n=0 | | x2+11x+16=0 | | 5-x+3x-3=8-x | | x/10+8=-5 |